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A method for calculating canonical transformations by computer is illustrated by a 
specific example. Techniques, with wider application, for handling Dirac gamma 
matrix algebra, Heisenberg commutation relations and most of vector analysis were 
developed. The programs used the IBM FORMAC routines; the techniques developed 
here indicate applications of FORMAC to noncommutative algebras by means of list 
processing within the syntax of those routines. 

The particular canonical transformation considered was that of Foldy and Wouthuysen 
on the Dirac Hamiltonian with electromagnetic potentials included. The calculations 
were carried out to the point at which all the so-called even operators up to the fourth 
order in the reciprocal of the mass had been generated. 

I. INTRODUCTION 

Canonical transformations provide a means of generating new conjugate 
variables (in the Hamiltonian sense) from old ones. In terms of these new variables, 
the transformed Hamiltonian of the system may be one with which calculations can 
be more readily done. One outstanding example of this is the transformation from 
the Schroedinger to the interaction picture in quantum electrodynamics. 

While the algorithm for generating a given canonical transformation can bc 
quite straightforward, the algebraic work can be formidable. This is especially true 
in quantum mechanical calculations wherein operators have algebraic properties 
in several difTerent spaces (Hilbert space, spin space, space-time). 

The purpose of this paper is to report on a method for carrying out a canonical 
transformation by computer using algebraic manipulation techniques. The 
programs discussed are based upon the FORMAC’ (Formula Manipulation 
Compiler) routines developed by Sammet [I] and Tobey et al. [2] at IBM. These 
are a set of subroutines for the performance of the symbolic manipulation involved 
in ordinary algebra and elementary differential calculus. We report here on the use 

1 These are available as a super set of PLjI on System/360. 
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of these routines to perform analytically the steps of a Foldy-Wouthuysen [3,4] 
FW transformation of the Dirac relativistic Hamiltonian with the inclusion of 
external electromagnetic fields. The even terms (defined below) of the transformed 
Hamiltonian up to those of fourth order in the reciprocal of the mass have been 
obtained. 

The specific problem treated is actually rather complicated; the algebraic 
considerations include those connected with Dirac gamma matrices, the Heisenberg 
commutation relations, and, most importantly, three-dimensional vector analysis. 
The author has devised a list-processing technique with the syntax of FORMAC 
that permits noncommutative algebra to be carried out. 

In the next section we shall present some background information on canonical 
transformations and on the Foldy-Wouthuysen transformation. In addition we 
shall outline the general procedure followed in our calculations. There are no new 
results in that section. 

In Section 111 we will describe the particular list structure used in the programs 
and indicate those details of the programs which we believe are important. Finally 
we shall present the results. 

11. MATHEMATICAL BACKGROUND 

To effect a quantum-mechanical canonical transformation on a Hamiltonian H, 
one must first find the appropriate generating function (an operator) [5]. Given 
this operator, say S, one has that the transformation is given by 

H’ = @He-S - ies(%e-s(%t), (1) 

where H’ is the transformed Hamiltonian. In practice, this may have to be carried 
out to some order by a truncated version of the formules 

es 2emS z -= 
%t n& (n -: l)! 

c(n) 
( ) 
s 2 

’ at . 

In these formulas the quantities C(‘*) represent the n-th repeated commutator of S 
with the other operator indicated. 

In addition to the complexities introduced by the performance of the commuta- 
tions implied by the previous two formulas, there is the difficulty that S itself may 
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be unknown and have to be developed in a series. More formally, assume that one 
is given a Hamiltonian of the form 

wherein H, is a piece with which calculations may be done readily and in which 
the piece XH, has certain undesirable properties. The quantity h is a scalar para- 
meter which can be presumed small. A canonical transformation which will 
eliminate the term hH, is sought; however, the operator S is unknown. If one can 
solve the equation 

for S, , then one can use the operator S1 to eliminate hH, from H by means of 
(2) and (3). This will usually be at the expense of adding terms that are at least 
quadratic in X to H. 

The original problem of finding one canonical transformation to eliminate the 
term AH, can now be changed to the following: Find a succession of canonical 
transformations, generated in turn by 

where the commutator ofH,with&isequal to the objectionable terms remaining in 
rhe (transformed) Hamiltonian after the previous transformations have been carried 
out. Since the processes indicated each generate an infinite series of terms, one 
clearly must truncate all expressions at some power of X to which one intends the 
calculation to be consistent. 

The entire process is straightforward if one can generate the 9s. It can easily 
become tedious; the possibility that the entire process can be computerized suggests 
itself. The remainder of this paper concerns itself with a specific application of this 
class of algebraic operations. 

The particular case chosen was that of the FW transform of the Dirac Hamil- 
tonian 

for a relativistic electron. The quantities and operators in this Hamiltonian have 
the following significance. The mass is denoted by nz while A and 6, are the electro- 
magnetic vector and scalar potentials, respectively. The charge on the clcctron is y. 
The Hamiltonian is understood to act on a column vector of dimension four 
standing to the right whose components are functions of the space-time coordinates. 
This vector is called a spinor and the four matrices (Y, , al/ , OL, and /3 are 4 x 4 
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matrices acting on it. Finally, p stands for the momentum operator of single- 
particle quantum mechanics so that p = --iv. In all these formulas the so-called 
natural units (fi = 1, c = 1) have been used. 

While the computational features of this problem are of prime interest, here let 
me state the physical motivation for the FW transformation. This lies in the fact 
that a single-particle interpretation of the states connected with the Dirac Hamil- 
tonian appears to be physically impossible. In the nonrelativistic limit one should 
be able to recover the Pauli-Schroedinger theory of the spinning electron. By this 
nonrelativistic limit we mean that not only should the kinetic energy of the particle 
be small compared to the rest mass energy by also that the frequencies and wave- 
numbers characterizing the external fields should be small compared to py1. 

As just indicated, the Pauli-Schroedinger theory should be the limit of the Dirac 
theory if the proper expansion in the reciprocal of the mass were to be carried out. 
The key point shown by Foldy and Wouthuysen and by Tani is that the correct 
expansion is obtained by a canonical transformation which eliminates the so-called 
odd operators from the Hamiltonian. In essence, the odd operators contain those 
matrices which couple the spinor components of the negative energy eigenfunction 
in (6) with those of positive energy in the rest frame of the particle. Their elimina- 
tion permits the separation of the two types of eigenfunctions. 

In the usual representation the odd operator matrices (in block diagonal form) 
are 

fz = (+I-;-), Y = (+-)Y Y5 = (+I+), Y5P, (7) 
- 

while the others, the even ones, are 

1= (+I$), p= (+I+), =o= (g];), Pe. (8) = - 

The cri are 2 x 2 Pauli spin matrices, i = k, 2,3, and 1 is the twodimensional unit 
matrix. In this representation the odd operators are those which couple the upper 
two components of the spinors with the lower two components. 

As has been stated, the FW transformation is effected by the elimination of the 
odd operators from the Dirac Hamiltonian. If the four vector (A, 4) is identically 
zero, then the use of 

s= Pa*IJ 
[ 
- arctan (-$$)I 
21Pl 

in the formulas given above will give 

H’ = /3(p” + WPy. 
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In the general case the operator S cannot be determined, so far as is known, in 
closed form. Instead, a succession of S’s, each of a higher power in the reciprocal 
of the mass can be determined and successive transformations be carried out. 
Suppose one writes the Hamiltonian at any stage of the calculations in the form 
H z /h I B -.: Q!, where Q is the part containing odd operators only and B 
contains even operators only then the choice for the S to use at this stage is 

s := /3Q/2n1. (10) 

Then H’ calculated according to (1) is at least one order lower in mass than is H 
since /3Q + Qp = 0 for all odd operators. 

The method employed for systematically carrying out the FW transformation is 

as fo1lows: 

(a) The operator S is formed according to (5). 

(b) The canonical transformation with this S is carried out to a given order, 
say N, in the reciprocal of the mass using (1) in the form given by the formulas 
(2) and (3). 

(c) Given the transformed Hamiltonian that contains odd operators multi- 
plied by powers of the reciprocal mass at least as high as some order r, one can 
repeat the steps to obtain a Hamiltonian which is of order r -; 1 in the reciprocal 

2 mass . 

As mentioned above, the calculation on which we report was carried out to the 
fourth power in the inverse of the mass. At this point all parts of the various 
programs had been tested and the algorithms appeared to be correct. As indicated 
below, further computations on our particular computer, a 360140 Model H, are 
not practicable. 

III. IMPLEM~WATI~N 

A. General Considerations 

In order that the reader will be better able to follow the discussion, we shall first 
give a particular example of a commutator that has to be calculated, viz., 

[ts - B, 01 * p] =+ Q * B a . p - a . per * B. (11) 

If we recall that p stands for (-i) times the gradient operator, then we see that two 
separate algebraic structures are reflected in the commutator. One is the Dirac- 

2 At some point one can see that no more even operators of small enough order will be generated 
by succeeding transformations. Thus not all steps need be done. 
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Pauli algebra of the matrices cs and a and the other is the Heisenberg algebra of the 
well-known commutation relations of quantum mechanics. It is necessary, there- 
fore, to use the full algebra of the Dirac matrices and not just their commutation 
relations. One has to calculate, in fact, 

y5[Bi,~i]+iol,{Bi,gj)~ijrc~~5(B.p-p.B)+ia.(B~p-p~B). (12) 

As the reader can discern, the curly brackets stand for the anticommutator and 
the eijlc is the Levi-Civitta density. It should be remembered that the Hamiltonian 
of which these terms will form a part acts on a spinor wave function whose presence 
on the right is understood. 

The only method to use for a machine calculation of the commutator or anti- 
commutator that occurred to the author is that which imitates an ordinary hand 
calculation, viz., bring all differentiation operators to the right factor by factor 
within each term. A straightforward algorithm using list-processing was developed 
for this purpose and will be described below. 

A glance at the previous Eq. (2) reveals that feature of the programming which 
the author found most formidable. This is the treatment of ordinary vector analysis. 
The goal of this calculation was not to obtain pages of complicated formulas but 
rather to see if any pattern might emerge in the higher order terms. It was hoped to 
completely avoid vector and tensor indices with their attendant proliferation of 
Kronecker deltas and Levi-Civitta densities. However, the indicated method for 
carrying out the Heisenberg algebra caused a gradient operator to be separated 
physically (i.e., positionally on the list) from any vector product. With proximity 
destroyed as an indicator of these possible multiplicative relationships between 
vectors, reliance on vector and tensor indices has to be made. Some effort, described 
below, was then made to achieve algebraic simplification by restoring ordinary 
notation wherever possible. Let me say, though, that Kronecker deltas were 
completely avoided and that no Levi-Civitta densities with common indices 
occurred in any completely processed term. 

As has been stated, the algebra of the dynamical commutation relations was 
performed using a list-processing technique. This was done within the framework 
of FORMAC using the syntactic entity unspecz~edjiinction [l, 21 permitted by that 
language. As in the ordinary mathematical notation, when we write “Let z be a 
function f of x and y; z = f (x, y)” without any further specificiation off, so one 
can have the FORMAC statement 

LET[Z = f;. (X, Y)] 

with very much the same meaning. From our point of view, the unspecified function 
acts both as a labelled list of factors whose order is not subject to change by the 
automatically invoked simplzjication routines of FORMAC and also as a factor 
within a given term in the ordinary algebraic sense. 
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Every term that occurs, whether in the operator S, in the Hamiltonian H, or in 
SS/i’t, in these programs has the structure3 

(algebraic constant) * (name of Dirac matrix) .I; (unspecified function). 

The algebraic constant can be an implicit unity. The names of Dirac matrices were 
GAMMA, BETA, ALPHA, UNITY, G5 (for y 5), SS(for /3~ 5), SIGMA, and 
AXVECT (for pa). Four of these (BETA, UNITY, S5, G5) are rotational scalars: 
the other four arc each three-dimensional vectors. This means that for each name 
given there are actually three distinct matrices whose distinguishing subscripts 
bear the significance of vector indicts in ordinary three-dimensional space. 

If the Dirac matrix in a term, and there is only one per term, is a scalar then the 
name of the unspecified function is NONE; otherwise the l;ector index qf the matrix 
is taken.for the name. A group of examples, with some additional comments, will 
now be given. In each case, we give the term using ordinary vector notation, 
followed by the equivalent using vector indices and the Einstein summation 
convention and, finally, we give the FOKMAC representation we used: 

ALPHA :* LABEL (I). (EFIELD, LABEL. (1)) 

#I * SIGMA * LABEL (1). (DEL, LABEL. (I), PHI, NONE) 

GAMMA :* LABEL (I). (BFIELD, LABEL. (2), DEL, LABEL. (3)) t 

EPSILON. (LABEL. (l), LABEL. (2), LABEL. (3)) 

(l/m) j3 C . E. 

(l/MU) * BETA * NONE, (DEL, LABEL. (I), EFTELD, LABEL. (1)) or 

(l/MU) :t BETA * NONE. (DIV. (EFIELD): NONE) 

First we note that any term in the Hamiltonian is a rotational scalar; therefore, 
every vector (or tensor) index occurs twice and the summation convention holds. 
Every argument list for an unspecified function used in this manner consists of 
dyads each in turn made up of a quantity and its index. These conventions insure a 
uniform structure for the lists, which in turn simplifies the processing. This struc- 
ture has proved sufficiently flexible to have been used in all steps of the programs. 

3 There are also a possible qrk’s. 
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Note that within the list itself the indices are also unspecified functions. This 
feature facilitates obtaining the number of the index which under FORMAC rules 
is the second argument of the unspecified LABEL. The name, LABEL, is the frst 
argument. Furthermore it is necessary that the index may itself be a list; this occurs 
whenever the first element of a triad is tensorial in nature. As an example, the 
term 

would have the representation 

SIGMA * LABEL (1). (DEL. (EFIELD), INDICE. (LABEL. (l), LABEL. (2)), 
DEL, LABEL.(2)) 

There is a fine point implicit in all this that may cause the reader some confusion. 
The name of the list, LABEL (I), is merely an indexed quantity which can serve as 
the name of an unspecified function. Although LABEL. (1) and LABEL(l) are 
quite different syntactically, they are semantically equivalent in our usage of them. 

As a further example of the representation of terms we give the initial forms of 
S and of H. These are 

H = BETA * MU * NONE. (1, NONE) + ALPHA * LABEL (1). (PI. LABEL.(I)) 
+ UNITY t NONE. (PHI, NONE), 
S = (1/2/MU) * GAMMA * INDEX (1). (PI, INDEX.(l)), 

in which we have used the name PI to stand for the mechanical momentum 

II s p - qA. 

Note further that we consistently use the name INDEX in the terms of S and 
LABEL in the terms of H; this permits the programs to sort out the two sets of 
dummy indices without confusion. 

Given this method for forming lists, certain aspects of list processing are quite 
easy within the framework of FORMAC. The macro NARGS applied to an 
unspecified function yields the total number of arguments of the function plus one 
for the function name. The function ARG can be used to isolate any element on 
the list directly. This is actually easier than in LISP. If the list (unspecified func- 
tion) is a factor within a term it can be isolated by means of a FORMAC expression 
such as 

LET (LIST = TERM/EVAL (TERM, NAME. (5 (l)), 1)); 

where NAME is the unspecified-function name. Lists can be readily concatenated 
if the names of the unspecified functions can first be removed. This brings up the 
only basic inconvenience in regard to list processing with FORMAC; there is no 
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primitive function that yields the tail of a list. The author found that converting 
the algebraic formulas to PLjI character strings via the use of the CHAREX macro 
and then reintroducing the appropriate substring back into the FORMAC inter- 
preter was the most convenient method of handling this difficulty.* 

In many instances the programs converted the tensor symbolism into the more 
compact notation of vector analysis; such terms as DOT, CROSS. CURL, and 
DIV were used in contexts matching their ordinary LWZ. For example. 

ALPHA*LABEL(I). (EFIELD, LABEL.(2), BFIELD, LABEL.(Z), PI, LABEL.(l) 

was changed into 

ALPHA * LABEL (1) . (DOT. (BFIELD, EFIELD), NONE, PI, LABEL.(I)) 

near the end of the program step called HSNBERG.” Note that lexicographraphicai 
reordering has also taken place. 

The FORMAC interpreter will recognize as distinct quantities some that are 
syntactically different but semantically the same. This can occur in this type of 
calculation because of the manner in which the names oi‘ dummy indices are 
assigned or because of the order in which functions appear in one of the argument 
lists mentioned above. This problem in turn was connected with that of preventing 
a proliferation of cijk‘s as the calculations progressed. A considerable amount of 
relabelling and lexicographical reordering was necessary to bring about the can- 
cellation of grouping of terms that difl’ered only by a numerical factor. By and 
large, this was done successfully and automatically by the programs. Advantage 
was taken of the fact that the results from the program step DIRAC, described 
below, occurred in pairs or quadrupules of terms. 

B. Details of In&dual Programs 

1) DIRAC. The commutation of the Dirac matrices was completely straight- 
forward and was carried out by what in effect was a table look up. Preliminary to 
this, the operator S is formed from the odd parts of H and also, the numerical 
factors in the several terms of H and S are isolated. The output was in pairs or 
quadruples of terms each of the form 

(numerical coefficient) f: (Dirac Matrix) * 

OPERATOR. (LABEL (1). (...), MO, INDEX (1). (...)), where 

MO stands for multiplicative operator. 

J Alternatively, to go from F. (A, R ,..., P) to F. (R, C,..., P) one can construct a list r f [S(2), 
S(3),...] and use the EVAL function. This would be particularly effecti\,e if lists of definite length 
were being used. 

5 This represents another use of the unspecified function, viz, to indicate a specific operation, 
either binary or wary. 

j81/813- j 
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The term paired with that above has the factors leading off with LABEL and 
INDEX interchanged and also a possible difference in sign. The numerical coeffi- 
cient may contain Levi-Civitta densities. The MO is one of the three (DOT, CROSS 
ON) and stand for the scalar, vector, and ordinary multiplicative operations of 
three-dimensional vector analysis, respectively. The MO ‘ON’ also occurs when 
the gradient operator is applied to a scalar function. 

2) HSNBRG. The commutation of the momentum operators, the pj with the 
external fields and potentials follows Heisenberg’s famous formulas: 

[pj JWI = --ifi aif, 

[P? > Pi1 = 0. 

(13) 

(14) 

Experience with the programs indicated that direct use of (1) and (2) led to a very 
large number of terms because of the expansion of powers of (p - qA). A further 
disadvantage of this form was that the gauge-dependent quantity div A made its 
appearance. For these reasons an alternative representation in terms of II = p - qA 
was employed. Equation (2) is now replaced by 

5 [I’&, I&] = -i(aiAj - ajAi) = -kijkBk , (15) 

In order to carry out this type of commutation rule it was necessary to temporarily 
relabel the 17 operators coming from S to say 7r and to give specific rules for moving 
a n to the right of a 17.17’s were not moved to the right of V. This artificial distinc- 
tion between two essentially identical objects can lead to complicated expressions 
equivalent to zero; by relabelling indices and by lexicographical reordering of lists 
this was avoided. 

As each operator is moved to the right, two new lists are generated; these new 
lists are subject to further list processing and one or both may eventually evaluate 
to zero. The method is recursive but it was not programmed using recursive 
subroutines. Instead, the lists were simply generated and marked for later exclusion 
or inclusion in the final answer. 

3) ADDUP. The individual terms from HSNBRG were divided by the order 
of commutation (n/r) and then were added together by this simple routine. The 
results, constituting the M-th commutator of S with H, divided by M factorial 
were then added to previous results to form the transformed Hamiltonian to a 
given order. 

This comparatively simple process of addition proved to be the most time- 
comsuming portion of the calculation since the number of operations required 
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should go up as the square of the number of terms in a sum. This is so because the 
term to be added must be compared with all terms in a sum to see if collection or 
cancellation of terms should occur. The use of subsums, each the coefficient of one 
type of Dirac matrix and each containing the same power of the mass, proved to be 
a useful technique. For example, it took almost an hour to add up some two 
hundred terms. This indicates that computations to higher order were not practi- 
cable for us. 

4) SDOT. The differentiation of the operator S is carried out factor by factor 
by list processing because of the noncommutative properties of the factors. The 
quantities .$ and fi are replaced by (--&grad $) and -curl E, respectively. This 
step was followed by a simplified version of HSNBRG. 

5) iVEW-S. The odd portions of H that will be used to select a new operator are 
easily picked out by a PL,/I routine. The actual operator S is formed term by term 
in DlRAC. 

These calculations were carried out on an IBM 360/40 Model H. This is the 
minimum size IBM machine on which one can USC the FORMAC-PL/I interpreter. 

IV. RESULTS 

We present here the transformed Hamiltonian (even terms) that results from the 
elimination of all odd operators whose order in 17 is greater than or equal to four. 
In the formulas given below we use the following notation: 

73 .= c = 1, 

m : mass, 

Q := charge 

n L= p - QA s -iv .- QA, 

x = n/m, 

b : QB/m2, 

e = QE/m2, 

d = v/m. 

Further, while the operator r is considered to operate on the wat’e function only 
irrespective of its position relative to other operators; 8 does not, on the other 
hand, act on the wave function. 
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The transformed Hamiltonian is given by 

H’ = pm (1+ f - f + ce2 ; @I) + @$ + m (- 7 - lla2d * e 
128 

i(Pe) * x - 
12 - 

i(x . a)(3 . e) + 3(d * e) d + ib * (dxe) + (exb) . n 
6 32 12 32 

+ i(e * dxb) i[dx(axe)] . n - -__- + 5[@4 .nl . x -__- 
64 192 32 i 

mo - + !Tf! a(0 * (ex7c)) - x + __ ex(&rb) i(dxe) n2 -___-- 
6 6 i 2 (exn) 7r2 

+ i (e x !!J + i(b . e) 7~ _ bi(e . n) + T + L!Z?$!E 

While the author exercised normal care and diligence in verifying the result just 
stated, let it be said that there are some possible sources of error not directly 
connected with the programs described above. Besides possible transcription 
errors, there are those connected with the necessity of using peripheral storage 
devices in these computations; a change of release in the Operating System for 
System 360 played considerable havoc with the input and output of data sets. 
Finally, in preparing the form of the result given above the author performed some 
further editing and collection of terms. 

V. SUMMARY 

We have presented a method for performing noncommutative algebra within 
the frame work of an existing algebraic manipulation language PL/I-FORMAC. 
The application was to canonical transformations and, in particular, to the Foldy- 
Wouthuysen transformation of the Dirac Hamiltonian. 

The method appears to us as one of general applicability to canonical trans- 
formations and to the calculation of commutators; only the specific rules for 
interchanging operators need to be changed in order that a different case can be 
treated. 
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